
Gradient Descent Algorithm — a deep 
dive (by R. Kwiatkowski) 
The Gradient Descent method lays the foundation for 
machine learning and deep learning techniques. Let’s 
explore how does it work, when to use it and how does it 
behave for various functions. 

 

 

1. Introduction 

Gradient descent (GD) is an iterative first-order optimisation 
algorithm used to find a local minimum/maximum of a given 
function. This method is commonly used in machine learning (ML) 
and deep learning(DL) to minimise a cost/loss function (e.g. in a 
linear regression). Due to its importance and ease of 
implementation, this algorithm is usually taught at the beginning of 
almost all machine learning courses. 

However, its use is not limited to ML/DL only, it’s being widely used 
also in areas like: 



• control engineering (robotics, chemical, etc.) 

• computer games 

• mechanical engineering 

That’s why today we will get a deep dive into the math, 
implementation and behaviour of first-order gradient descent 
algorithm. We will navigate the custom (cost) function directly to 
find its minimum, so there will be no underlying data like in typical 
ML tutorials — we will be more flexible in terms of a function’s 
shape. 

This method was proposed before the era of modern computers and 
there was an intensive development meantime which led to 
numerous improved versions of it but in this article, we’re going to 
use a basic/vanilla gradient descent implemented in Python. 

2. Function requirements 

Gradient descent algorithm does not work for all functions. There 
are two specific requirements. A function has to be: 

• differentiable 

• convex 

First, what does it mean it has to be differentiable? If a function is 
differentiable it has a derivative for each point in its domain — not 
all functions meet these criteria. First, let’s see some examples of 
functions meeting this criterion: 



 
Examples of differentiable functions; Image by author 

Typical non-differentiable functions have a step a cusp or a 
discontinuity: 

 
Examples of non-differentiable functions; Image by author 

Next requirement — function has to be convex. For a univariate 
function, this means that the line segment connecting two function’s 
points lays on or above its curve (it does not cross it). If it does it 
means that it has a local minimum which is not a global one. 

Mathematically, for two points x₁, x₂ laying on the function’s curve 
this condition is expressed as: 

 



where λ denotes a point’s location on a section line and its value has 
to be between 0 (left point) and 1 (right point), e.g. λ=0.5 means a 
location in the middle. 

Below there are two functions with exemplary section lines. 

 
Exemplary convex and non-convex functions; Image by author 

Another way to check mathematically if a univariate function is 
convex is to calculate the second derivative and check if its value is 
always bigger than 0. 

 

Let’s do a simple example (warning: calculus ahead!). 
GIF via giphy 

Let’s investigate a simple quadratic function given by: 
 

Its first and second derivative are: 

 



Because the second derivative is always bigger than 0, our function 
is strictly convex. 

It is also possible to use quasi-convex functions with a gradient 
descent algorithm. However, often they have so-called saddle 
points (called also minimax points) where the algorithm can get 
stuck (we will demonstrate it later in the article). An example of a 
quasi-convex function is: 

 

 

Let’s stop here for a moment. We see that the first derivative equal 
zero at x=0 and x=1.5. This places are candidates for function’s 
extrema (minimum or maximum )— the slope is zero there. But first 
we have to check the second derivative first. 

 

The value of this expression is zero for x=0 and x=1. These locations 
are called an inflexion point — a place where the curvature changes 
sign — meaning it changes from convex to concave or vice-versa. By 
analysing this equation we conclude that : 

• for x<0: function is convex 

• for 0<x<1: function is concave (the 2nd derivative < 0) 

• for x>1: function is convex again 



Now we see that point x=0 has both first and second derivative equal 
to zero meaning this is a saddle point and point x=1.5 is a global 
minimum. 

Let’s look at the graph of this function. As calculated before a saddle 
point is at x=0 and minimum at x=1.5. 

 
Semi-convex function with a saddle point; Image by author 

For multivariate functions the most appropriate check if a point is a 
saddle point is to calculate a Hessian matrix which involves a bit 
more complex calculations and is beyond the scope of this article. 

Example of a saddle point in a bivariate function is show below. 
 



 
Nicoguaro, CC BY 3.0, via Wikimedia Commons 

3. Gradient 

Before jumping into code one more thing has to be explained — 
what is a gradient. Intuitively it is a slope of a curve at a given point 
in a specified direction. 

In the case of a univariate function, it is simply the first 
derivative at a selected point. In the case of a multivariate 
function, it is a vector of derivatives in each main direction 
(along variable axes). Because we are interested only in a slope along 
one axis and we don’t care about others these derivatives are 
called partial derivatives. 

A gradient for an n-dimensional function f(x) at a given point p is 
defined as follows: 



 

The upside-down triangle is a so-called nabla symbol and you read 
it “del”. To better understand how to calculate it let’s do a hand 
calculation for an exemplary 2-dimensional function below. 

 

 
3D plot; Image by author 

Let’s assume we are interested in a gradient at point p(10,10): 

 

so consequently: 

 



 

By looking at these values we conclude that the slope is twice steeper 
along the y axis. 

4. Gradient Descent Algorithm 

Gradient Descent Algorithm iteratively calculates the next point 
using gradient at the current position, scales it (by a learning rate) 
and subtracts obtained value from the current position (makes a 
step). It subtracts the value because we want to minimise the 
function (to maximise it would be adding). This process can be 
written as: 

 

There’s an important parameter η which scales the gradient and 
thus controls the step size. In machine learning, it is 
called learning rate and have a strong influence on performance. 

• The smaller learning rate the longer GD converges, or may 
reach maximum iteration before reaching the optimum 
point 

• If learning rate is too big the algorithm may not converge to 
the optimal point (jump around) or even to diverge 
completely. 

In summary, Gradient Descent method’s steps are: 



1. choose a starting point (initialisation) 

2. calculate gradient at this point 

3. make a scaled step in the opposite direction to the gradient 
(objective: minimise) 

4. repeat points 2 and 3 until one of the criteria is met: 

• maximum number of iterations reached 

• step size is smaller than the tolerance (due to scaling or a 
small gradient). 

Below, there’s an exemplary implementation of the Gradient 
Descent algorithm (with steps tracking): 

This function takes 5 parameters: 

1. starting point - in our case, we define it manually but in 
practice, it is often a random initialisation 

2. gradient function - has to be specified before-hand 

3. learning rate - scaling factor for step sizes 

4. maximum number of iterations 

5. tolerance to conditionally stop the algorithm (in this case a default 
value is 0.01) 



5. Example 1 — a quadratic function 

Let’s take a simple quadratic function defined as: 
 

Because it is an univariate function a gradient function is: 

 

Let’s write these functions in Python: 

For this function, by taking a learning rate of 0.1 and starting point 
at x=9 we can easily calculate each step by hand. Let’s do it for the 
first 3 steps: 

 

The python function is called by: 

The animation below shows steps taken by the GD algorithm for 
learning rates of 0.1 and 0.8. As you see, for the smaller learning 
rate, as the algorithm approaches the minimum the steps are getting 
gradually smaller. For a bigger learning rate, it is jumping from one 
side to another before converging. 



 
First 10 steps taken by GD for small and big learning rate; Image by author 

Trajectories, number of iterations and the final converged result 
(within tolerance) for various learning rates are shown below: 

 
Results for various learning rates; Image by author 

6. Example 2 — a function with a saddle point 

Now let’s see how the algorithm will cope with a semi-convex 
function we investigated mathematically before. 

 

Below results for two learning rates and two different staring points. 



 
GD trying to escape from a saddle point; Image by author 

Below an animation for a learning rate of 0.4 and a starting 
point x=-0.5. 

 
Animation of GD trying to escape from a saddle point; Image by author 

Now you see that the existence of a saddle point imposes a real 
challenge for the first-order gradient descent algorithms like GD and 



obtaining a global minimum is not guaranteed. Second-order 
algorithms deal with these situations better (e.g. Newton-Raphson 
method). 

Investigation of saddle points and how to escape from them is a 
subject of ongoing studies and various solutions were proposed. For 
example, Chi Jin and M. Jordan proposed a Perturbing Gradient 
Descent algorithm — details you find in their blog post. 

7. Summary 

In this article, we checked how a Gradient Decent algorithm works, 
when can it be used and what are some common challenges when 
using it. I hope this will be a good starting point for you to explore 
more advanced gradient-based optimisation methods like 
Momentum or Nesterov (Accelerated) Gradient Descent, RMSprop, 
ADAM or second-order ones like the Newton-Ralphson algorithm. 
 


